Net fan - A project testing whether small solar powered electric fans improve comfort inside mosquito nets

Background
Long-lasting insecticidal nets (LLINs) are ineffective malaria transmission prevention tools if they are unused. Discomfort due to heat is the most commonly reported reason for not using nets, but this problem is largely unaddressed. With increasing rural electrification and the dropping price of solar power, fans could improve comfort inside nets and be affordable to populations in malaria endemic areas. Here, results are presented from a pilot randomized controlled cross-over study testing the effect of fans on LLIN use.

Methods
Eighty-three households from two rural communities in Greater Accra, Ghana, randomized into three groups, participated in a 10-month cross-over trial. After a screening survey to identify eligible households, all households received new LLINs. Bͻkͻͻ net fan systems (one fan per member) were given to households in Group 1 and water filters were given to households in Group 2. At mid-point, Group 1 and 2 crossed over interventions. Households in Group 1 and 2 participated in fortnightly surveys on households’ practices related to nets, fans and water filters, while households in Group 3 were surveyed only at screening, mid-point and study end. Twenty-three key informant interviews with household heads were conducted from July to August 2015. The purpose of the interviews was to obtain insight into perceptions of participants about the net fan system in relation to LLIN use. Entomological and weather data were collected throughout the study. Analysis took both ‘per protocol’ (PP) and ‘intention to treat’ (ITT) approaches. The mid- and end-point survey data from Group 1 and 2 were analysed using Firth logistic regressions. Fortnightly survey data from all groups were analysed using logistic regressions with random effects.

Results
Provision of fans to households appeared to increase net use in this study. Although the increase in net use explained by fans was not significant in the primary analyses (ITT odds ratio 3.24, p > 0.01; PP odds ratio = 1.17, p > 0.01), it was significant in secondary PP analysis (odds ratio = 1.95, p < 0.01). Net use was high at screening and even higher after provision of new LLINs and with follow up. Fan use was 90–100% depending on the fortnightly visit.
While all study participants reported using LLINs, with mosquito nuisance prevention as the prime motivation, heat was also mentioned as a key barrier to net use. Respondents appreciated the net fans because they improved comfort inside bed nets. The LED light on the fan stand became the main source of light at night and positively influenced the perception of the intervention as a whole.

Conclusions
The general acceptance of the net fan system by the study participants highlights the potential of the intervention to improve comfort inside mosquito nets. This, therefore, has a potential to increase bed net use in areas with low access to electricity. However, this pilot study could not provide definitive evidence that fans increase net use. A larger study with additional statistical power is needed to assess this association across communities with diverse environmental and socio-demographic characteristics.

Contact

Nadja Cereghetti

Project Facts

Collaborating Institutions