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TARGET: eCDSS to guide acute outpatient care in <5 year old children (ped), 0 to 2 months
old (Y1) and vaccination routine and campaigns.

GEOGRAPHIC SCOPE: Tanzania, Kenya, Chad, Niger, Nigeria, Mali, CAR, Sierra
Leone, South Sudan
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TEMPORAL SCOPE: 2016-current

Health Facilities

Consultations over time
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IMPACT: Improvements in consultation process, better communication between health
workers and caretakers and decrease of antibiotics overuse.
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What / Where / Why is MSFeCARE?

PROPERTIES:

OPERATIONAL tool (not research)

Simple

Robust to volatile and (very) low-resource settings
MSF guidelines

— Static, generic predictions — maximize performance on the MAJORITY of patients
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OBJECTIVE

e Sharing, externally, the reality of analysing the data from the field

REALITY CHECK

e MSF is collecting huge amount of data
e Our data collection is not predictive
e Hidden potential in the data

To unlock data potential, collaboration with EPFL
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AIM: Use data to improve clinical practice in resource-limited settings

1. Make algorithms that predict results of expensive tests/expertise
2. Better represent neglected populations
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« MSc Semester Projects (30% for 4 months)
* MSc Thesis Projects (100% for 4-6 months)
* Internships (variable time)
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QUESTION

» What is the predictive potential of the data?

Patterns of

Data cleaning, visualization, The “value” of | Mobil
outbreak detection CDSS questions anomalous use obile app
A A

Paloma Cito Lynn-Kelly Tchoffa Kuan Tung Henrik Myrhe Batuhan Faik
Semester Project Semester Project MSc Thesis Semester Project Intern
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= Challenges
= Systematic missingness
* Interpretability
= Robustness to variable resources

= Portability to new contexts
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Patient’s age Fever yes/no Sequential updates

as new information
becomes available

State l
Numerical Age Fever #
representation
of patient encoder encoder

/

[ Anemla] (Malana J Anemia Continuous feedback

decoder decoder decoder with increasing
predictive confidence

aneimialage)  Plmalarialage)  Planemin agefover)

Predicting what you need with what you HAVE
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Modular clinical decision support (app)

Q1) CRP

“sample 1S <TU mg/T
o one blue line, the serum CRP concentration is
10-40 mg/I
o two blue lines, the serum CRP concentration is
40-80 mg/I
o three blue lines. the serum CRP concentration is
o

Predictions

Last answered question: CRP

|
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Likelihood of Not Uncertain Likelihood of
Having Disease Having Disease

Anemia:

Dehydration:
Diarrhea:

Fever without source:
Malaria:

Malnutrition:

Pneumonia:

Upper respiratory infection: -65%

Anemia

Dehydration

Diarrhea

Fever without source
Malaria

Malnutrition
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100%

Increasing
confidence
in positive
diagnosis

0% Positivity
threshold

-100%
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0.9 BUILD iteration #1
Examples:

* Missing values

* Physiological improbable entries
« Variance between patients

0.8 1

0.7 +

0.6 T

0.5 T

04+

03 +

02 1

0.1




MSFeCARE

Anomalous use detection Rt i

REcommendations

-1.00
-0.75
-0.50
Slow
Gamer 0.25
| .
g
g Thorough -0.00
O
Fast -—-0.25
Typical
- —0.50
-0.75
o <+ Lo St st N N & & & & & <~
&% R &Qz '\OC(-/ &7 O&Q/ 3\\’ ?}65‘ < >(\Q _;LO & N _\(_2"6\){&'\ P S’O
& N NS o & o 4 4 &7
A A e’g/ \}(\ \\q \(\q o 0\'\ - —1 00
A\ O \(\ Q\Q
o7 &0
& A\

Features



- MSFeCARE
Anomalous use detection W soncinca

REcommendations

Fast

Gamer
Adjustive

Skeptic
Typical

Thorough
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TYPICAL

Garmer

Typical

W@M — o
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Many become/stay gamers

Slow users don’t get faster



e Responsibility

e Resistance

e Barrierto
healthcare

e Uncertainty

e C(Call for evidence
in the use of
data-driven tool
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