a quantitative history of malaria in maps

Dr Ewan Cameron, PhD Malaria Atlas Project

5th Century BC: DNA evidence of malaria in Egyptian burials

340: Ge Hong describes treatment with artemesinin

1632: Bernabe Cobo brings cinchona bark to Europe

1665: Hooke's Micrographia

189os: Ross & Grassi elucidate *Plasmodium* life cycle

Pre-Microscopy Era

1969: End of GMEP/ switch to control obj.

1960s: Progress in Brazil. but drug resistance in SE Asia

1955: GMFP approved at 8th World Health Assembly

1947: NMFP launched in Nind at AZII nn wartime Progress (DDT)

1880: Laveran discovers *Plasmodium* parasite

Defined synt dans to seny frais

Global Malaria Eradication Program Era

1998: Roll Back Malaria partnership launched: 2000: MDG 6c targets malaria

2001: WHO recommends Artemisinin Combination Therapies

Mid-2000s: Rapid Diagnostic Test kits in large-scale production

Millennium Development Goals Era

The Present

Pre-History

5th Century BC: DNA evidence of malaria in Egyptian burials

340: Ge Hong describes treatment with artemesinin

1632: Bernabe Cobo brings cinchona bark to Europe

1665: Hooke's Micrographia

189os: Ross & Grassi elucidate *Plasmodium* life cycle

Pre-Microscopy Era

available maps? limited genetic maps

1967: Resurgence

1969: End of GMEP/ switch to control obj.

1960s: Progress in Brazil. but drug resistance in SE Asia

1955: GMFP approved at 8th World Health Assembly

1947: NMFP launched in USA to build nn wartime Progress (DDT) 1880: Laveran discovers *Plasmodium* parasite

Defined upon dans to seny freis

Global Malaria Eradication Program Era

1990s: Malaria in Africa now at crisis levels; potential of ITNs noted

1998: Roll Back Malaria partnership launched: 2000: MDG 6c targets malaria

2001: WHO recommends Artemisinin Combination Therapies

Mid-2000s: Rapid Diagnostic Test kits in large-scale production

Millennium Development Goals Era

The Present

Pre-History

5th Century BC: DNA evidence of malaria in Egyptian burials

340: Ge Hong describes treatment with artemesinin

1632: Bernabe Cobo brings cinchona bark to Europe

1665: Hooke's Micrographia

189os: Ross & Grassi elucidate *Plasmodium* life cycle

Pre-Microscopy Era

1969: End of GMEP/ switch to control obj.

1960s: Progress in Brazil. but drug resistance in SE Asia

1955: GMFP approved at 8th World Health Assembly

1947: NMFP launched in USA to build nn wartime Progress (DDT)

1880: Laveran discovers *Plasmodium* parasite

Defined synt dans to seny frais

Global Malaria Eradication Program Era

available maps? Lysenko, few

historical maps

1990s: Malaria in Africa now at crisis levels: potential of ITNs noted

1998: Roll Back Malaria partnership launched: 2000: MDG 6c targets malaria

2001: WHO recommends Artemisinin Combination Therapies

Mid-2000s: Rapid Diagnostic Test kits in large-scale production

Millennium Development Goals Era

5th Century BC: DNA evidence of malaria in Egyptian burials

340: Ge Hong describes treatment with artemesinin

1632: Bernabe Cobo brings cinchona bark to Europe

1665: Hooke's Micrographia

189os: Ross & Grassi elucidate *Plasmodium* life cycle

The Present

Pre-Microscopy Era

1969: End of GMEP/ switch to control obj.

1960s: Progress in Brazil. but drug resistance in SE Asia

1955: GMFP approved at Rth World Health Assembly

1947: NMFP launched in USA to build nn wartime Progress (DDT)

1880: Laveran discovers *Plasmodium* parasite

Defined upon dans to seny freis

Global Malaria Eradication Program Era

1990s: Malaria in Africa now at crisis levels: potential of ITNs noted

1998: Roll Back Malaria partnership launched: 2000: MDG 6c targets malaria

2001: WHO recommends Artemisinin Combination Therapies

Mid-2000s: Rapid Diagnostic Test kits in large-scale production

Millennium Development Goals Era

available maps? prevalence/incidence, interventions,

MARA/MAP/WHO

Pre-History

340: Ge Hong describes treatment with artemesinin

1632: Bernabe Cobo brings cinchona bark to Europe

timeline of malaria/malariology

1665: Hooke's Micrographia

189os: Ross & Grassi elucidate *Plasmodium* life cycle

The Present &

1880: Laveran discovers *Plasmodium* parasite

Defined synt dans to seny frais

Pre-Microscopy Era

1969: End of GMEP/ switch to control obj.

1960s: Progress in Brazil. but drug resistance in SE Asia

1955: GMFP approved at Rth World Health Assembly

1947: NMFP launched in USA to build nn wartime Progress (DDT)

Global Malaria Eradication Program Era

1990s: Malaria in Africa now at crisis levels: potential

1998: Roll Back Malaria partnership launched: 2000: MDG 6c targets malaria

2001: WHO recommends Artemisinin Combination Therapies

Mid-2000s: Rapid Diagnostic Test kits in large-scale production

Millennium Development Goals Era

available maps? projections under new interventions, drug

resistance, ...

of ITNs noted

malaria pre-microscopy: genetic maps

Piel et al., 2010. Nature Communications, 1, 104

- maps of the sickle haemoglobin allele frequency suggest a historical exposure to Pfmalaria at the population level
- hypothesis of balancing selection (protection vs SCA)
- likewise for P_V w/ maps of Duffy negativity

Howes et al., 2011, Nature Communications, 2, 266

the Lysenko map: malaria endemicity pre-control

Lysenko & Semashko, 1968, Itogi Nauk Med. Geogr., 25, 146

Hay et al., 2004, Lancet Infectious Diseases, 4(6), 327-336

- hand-drawn synthesis of diverse sources: records of disease, vector presence / absence, prevalence data, sickle cell traits
- interpolation via expert opinion + isohyets of temp & rainfall

Lysenko map vs. post-GMEP stable limits

Climatic Suitability Index

Cox et al., 1999, MARA/HIMAL Technical Report

Hav et al., 2004, Lancet Infectious Diseases, 4(6), 327-336

- transmission limits at turn of century illustrate marked reductions in Europe, USA, & South America
- transmission limits in Africa bounded only by climatic suitability
- introduction of quantitative modelling: digital covariates, geo-positioned data, standard metrics

Lysenko map vs. post-GMEP stable limits

- 2002 estimate: 48% of global population "at-risk" (3 billion)
- projection to 2010: 3.4 billion

National Population Prevalence Cartogram

Hay et al., 2004, Lancet Infectious Diseases, 4(6), 327-336

- growing understanding of disease burden due to malaria / increasing awareness of the scale of the problem
- malaria eradication back on the agenda: Roll Back Malaria (1998), Global Fund (2002)
- beginning of the large-scale interventions ...

Cox et al., 1999, MARA/HIMAL Technical Report

postmillennial scale up of ITNs in Africa

Proportion of children younger than 5 years sleeping under an insecticide-treated bed net

Noor et al., 2009, Lancet, 373, 58-67

coverage of ITNs in Africa mapped through triangulation of use and net age data from household surveys, with manufacturer supply data

Bhatt et al., 2015, eLife, 4, e09672

postmillennial scale up of ITNs in Africa

coverage of ITNs in Africa mapped through triangulation of use and net age data from household surveys, with manufacturer supply data

Bhatt et al., 2015, eLife, 4, e09672

postmillennial adoption of ACTs in Africa

Firstline Anti-Malarial Policy

Eastman & Fidock., 2009, Nature Reviews Mic., 7, 864-876

- frontline antimalarial policies widely switched to ACTs over 2003-2007 period
- access as measured by household surveys follows at varying rates across the continent

Donal Biszanio (unpublished)

postmillennial adoption of ACTs in Africa

- reasons behind lagging coverage show marked inter-country variation: access to care? healthcare providers follow guidelines? counterfiet drugs? patient compliance with full treatment regimen?
- allows identification of most promising interventions to improve health system efficiency

postmillennial application of IRS in Africa

• health surveys (also WHO assembled data) illustrate targeted application of indoor residual spraying in a number of African countries (funding ramped up since 2008)

prevalence & burden declines in Africa: 2000-2015

• household surveys + model-based geostatistics confirms progress over the past 15 years!

prevalence & burden declines in Africa: 2000-2015

• household surveys + model-based geostatistics confirms progress over the past 15 years!

Parasite Prevalence (Age Standardised 2-9 y/o) (%)

Incidence Rate (#Clinical Cases per 1000 PYO)

Bhatt, Weiss, Cameron et al., 2015, Nature, 526, 207-211

prevalence & burden declines in Africa: 2000-2015

effects of vector control on species abundances

Sinka et al., 2016, Malaria Journal, 15, 142

- impact of indoor-based insecticide interventions seen in change of vector species relative abundances
- relative susceptibility of funestus vs arabiensis: a role for future outdoor-based interventions?

2015 in review: malaria mortality in Africa

- spatial disaggregation of national-level mortality estimates (IHME; verbal autopsy) via incidence and treatment surfaces
- highlights heterogeneities between & within countries

Gething et al., 2016, New England Journal of Medicine, 1606701

2015 in review: malaria mortality in Africa

 detailed understanding of mortality important for the planning, implementation & refinement of control strategies

Gething et al., 2016, New England Journal of Medicine, 1606701

2015 in review: malaria mortality in Africa

 detailed understanding of mortality important for the planning, implementation & refinement of control strategies

Gething et al., 2016, New England Journal of Medicine, 1606701

the other malaria map: Plasmodium vivax

Howes et al., 2016, American Journal of Tropical Medicine & Hygiene, 95, 5

• mapping for burden enumeration of *Plasmodium vivax* steadily improving; as are mechanistic modelling tools

towards elimination: maps from alternative metrics

Ashton et al., 2015, Am. J. Trop. Med. & Hyg.,, 93(1) 168-177:

challenge is to estimate SCR (ongoing work with Drakeley group)

Hotspot

Hotspot

towards elimination: maps from alternative metrics

• the importance of human movement data: deconvolution of sources & sinks from observed prevalence surface

Ruktanonchai et al., 2016, PLoS Comp. Bio., 1004648

towards elimination: maps from alternative metrics

Alegana et al., 2016, Scientific Reports., 6,29628

- catchment modelling: an increasingly important step to harness facility level case data
- at MAP: development of travel time surfaces (Dan Weiss) & statistical methodologies for joint API & point prevalence modelling (Tim Lucas)

a possible future: insecticide resistance ...

Slater et al., 2016, Malaria Journal, 15, 10

maps for forecasting (& hopefully real-time monitoring) of risks / new challenges

a possible future: intervention deployments ...

maps for understanding potential of RTS,S vaccine

and for assisting program managers working at sub-national level (SPECTRUM-MALARIA)

a possible future 15 years from now ...

Present day incidence vs model based forecast for 2030: increasing coverage (90%) + SMC

Griffin et al., 2016, Lancet Infectious Diseases, 16, 465-472

• power of maps for illustration & comparison of likely outcomes under future intervention plans (focus of Malaria Modelling Consortium)

the end

funders of the Malaria Atlas Project ...

