

Associated Institute of the University of Basel

Jennifer Keiser Helminth Drug Development Unit Department of Medical Parasitology and Infection Biology

Swiss TPH Winter Symposium 2017

Helminth Infection – from Transmission to Control

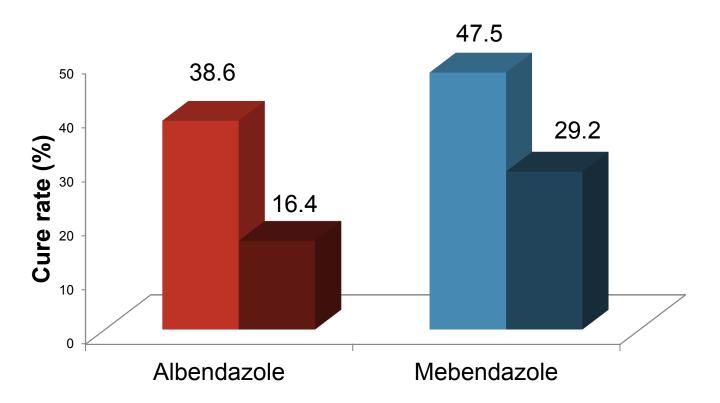
Drug combinations against soiltransmitted helminths

Basel, 7 December 2017

Cure and egg reduction rates of recommended drugs (single dose) for soil-transmitted helminthiasis

Efficacy of Current Drugs Against Soil-Transmitted Helminth Infections

Systematic Review and Meta-analysis


Jennifer Keiser, PhD Jürg Utzinger, PhD

Context More than a quarter of the human population is likely infected with soil-transmitted helminths (*Ascaris lumbricoides*, hookworm, and *Trichuris trichiura*) in highly endemic areas. Preventive chemotherapy is the mainstay of control, but only 4 drugs

Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta-analysis

Cure rate T. trichiura 1995 versus 2015

Significantly reduced efficacy → Resistance development?

→ Need for new anthelminthic treatments

New/alternative drugs

Tribendimidine

- Broad spectrum of activity (nematodes and trematodes)
- High activity against liver flukes
- High activity against hookworm; else, similar to albendazole
- FDA registration ongoing

Oxantel pamoate

Excellent trichuricidal drug, no longer marketed

Ivermectin

- On the essential medicine list
- Activity against filarial infections, A. lumbricoides and S. stercoralis

Moxidectin

- FDA registration ongoing for onchocerciasis
- Activity against S. stercoralis

Drug combinations

- None of the recommended/alternative drugs covers all soil-transmitted helminth species with acceptable efficacy at a single dose
 - → broaden the spectrum of efficacy
- Treating simultaneously with 2 drugs from different anthelmintic classes (e.g. benzimidazoles, macrocyclic lactones)
 - → slow development/ prevent drug resistance
- Increased efficacy? Not known whether drug combinations exhibit
 - → synergistic effects

Drug combination tiers

Expert meeting in Seattle (March 2016) identified priority combinations based on available evidence

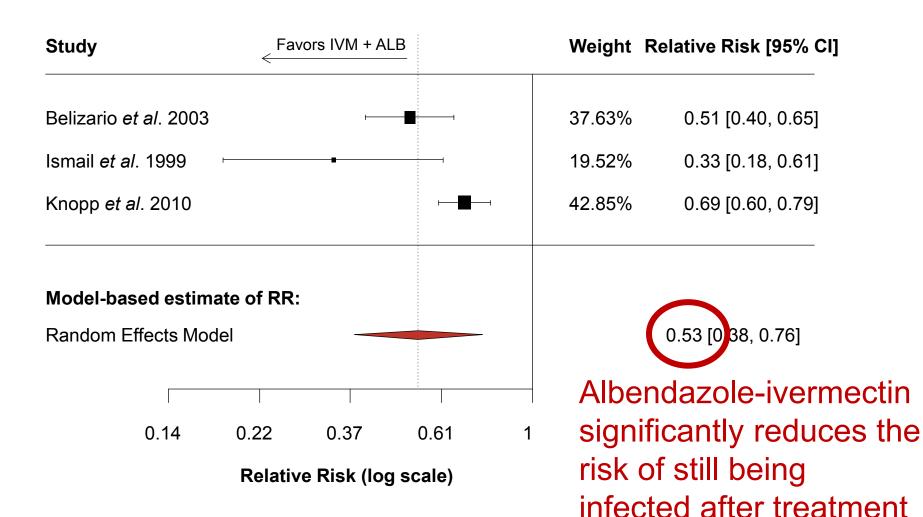
Tier 1: albendazole + ivermectin

Tier 2: albendazole + oxantel (or oxantel/pyrantel)

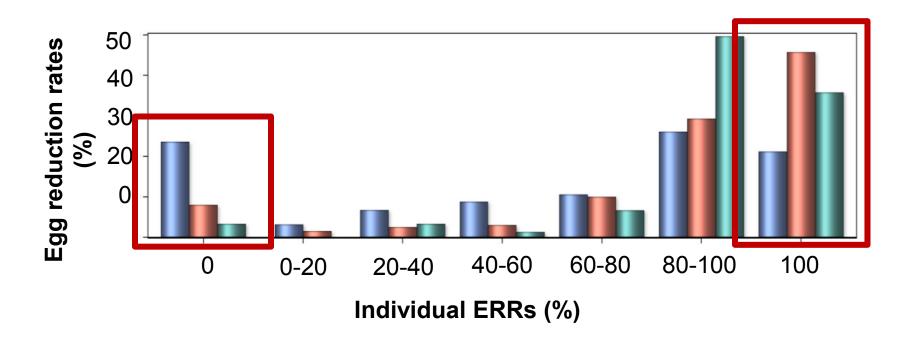
Tier 3: tribendimidine and moxidectin combinations

Tier 4: novel treatments, e.g. emodepside plus partner drug

Tier 1: Albendazole-ivermectin

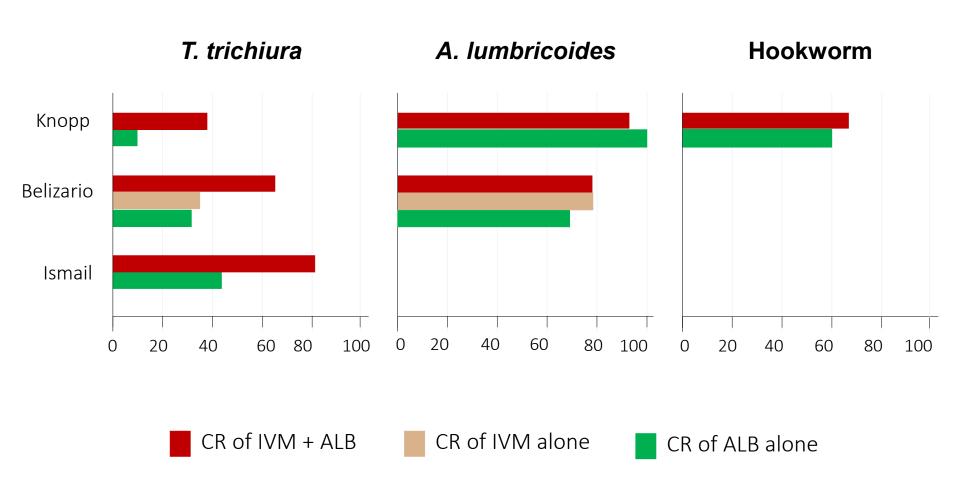


- BMGF grant ("Optimizing Drug Therapy against Soil-Transmitted Helminthiasis") since 11/2016
- Combination included in Essential Medicine List for treatment of soiltransmitted helminthiasis early 2017
- Meta-analysis on efficacy and safety, analysis of individual patient data:
- 466 studies screened, 4 studies identified


Study	IVM + ALB	ALB alone	IVM alone	Studied parasites
Belizario <i>et al.</i> , 2003	X	X	X	T. trichiura, A. lumbricoides
Speich <i>et al.</i> , 2015	X			T. trichiura, A. lumbricoides, hookworm
Knopp <i>et al.</i> , 2010	X	X		T. trichiura, A. lumbricoides, hookworm
Ismail <i>et al</i> ., 1999	X	X		T. trichiura

Albendazole-ivermectin versus albendazole T. trichiura

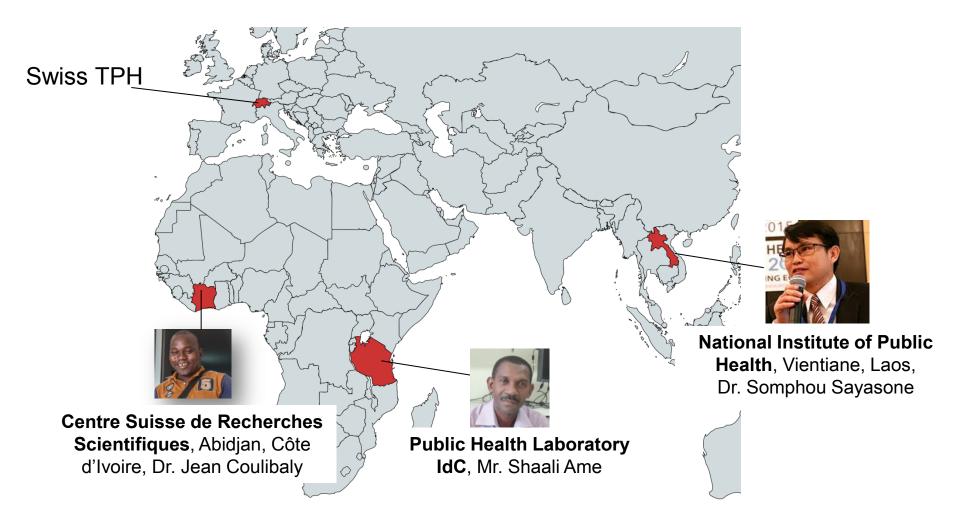
Egg reduction rates in *T. trichiura* patients

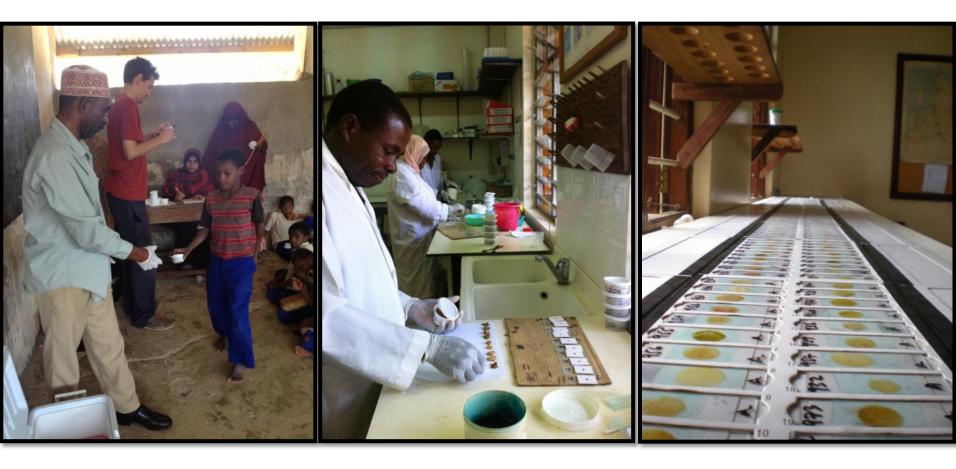


ALB alone

■ IVM + ALB
■ IVM alone

No greater benefit against hookworm and A. lumbricoides




Tier 1: Albendazole-ivermectin

- Multi-country/continent study planned:
- Evaluation of safety and efficacy of albendazole-ivermectin versus albendazole in Tanzania, Laos and Côte d'Ivoire
- Sample size: n=600 (300 per arm) per site
- One baseline and three follow-up assessments at day 21, day 180, and day 360
- Retreatment on day 180 of positive participants according to their trial allocation

Clinical studies

Evaluation of 2 stool samples pre- and post-treatment (21 days) using the Kato-Katz method for the determination of cure and egg reduction rates

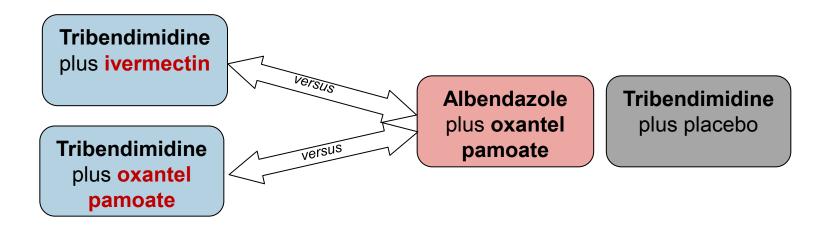
Clinical examination and treatment

Tier 2: Albendazole-oxantel pamoate

• Evidence from 4 studies (2012-2016)

	No.	Cure rates (95%CI)	Egg reduction rates (95%CI)
A. lumbricoides	312	95.5 (84.9-98.8)	98.9 (91.6-100.0)
Hookworm	395	66.1 (38.6-85.6)	85.7 (68.7-100.0)
T. trichiura	519	75.0 (44.8-91.7)	93.6 (79.3-100.0)

Oxantel pamoate can be administered by weight independent dose (500 mg)



Tier 3: Tribendimidine combinations

Randomized trial on Pemba and in Côte d'Ivoire in 2016

Primary outcome: egg reduction rate against hookworm, assessed for non-inferiority (3% margin)

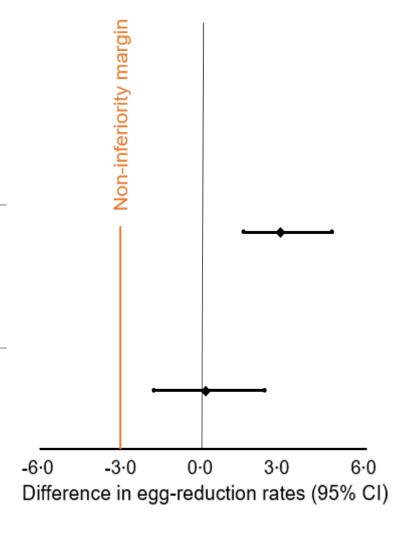
Secondary outcomes: safety, efficacy against *T. trichiura* and *A. lumbricoides*

Sample size: 640 adolescents aged 15-20 years (n=400 Pemba, 240 Côte d'Ivoire; 160 per treatment arm)

Results: Efficacy

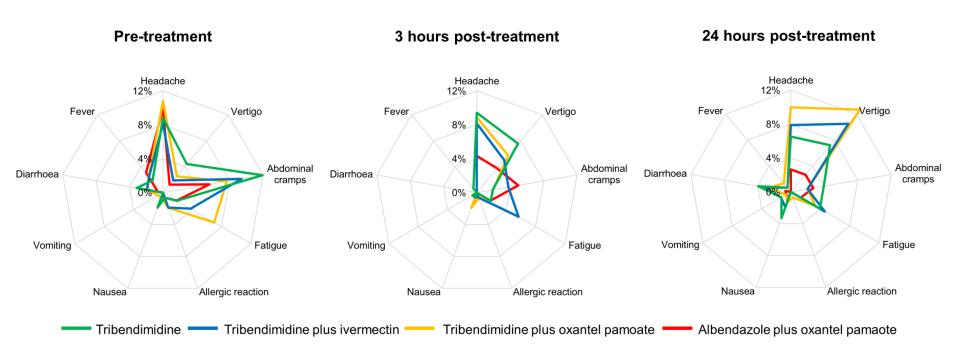
Hookworm

TRB-IVER vs. ALB-OXP


99.5% vs. 96.0%

Difference 3.52 (2.05 to 5.65)

TRB-OXP vs. ALB-OXP

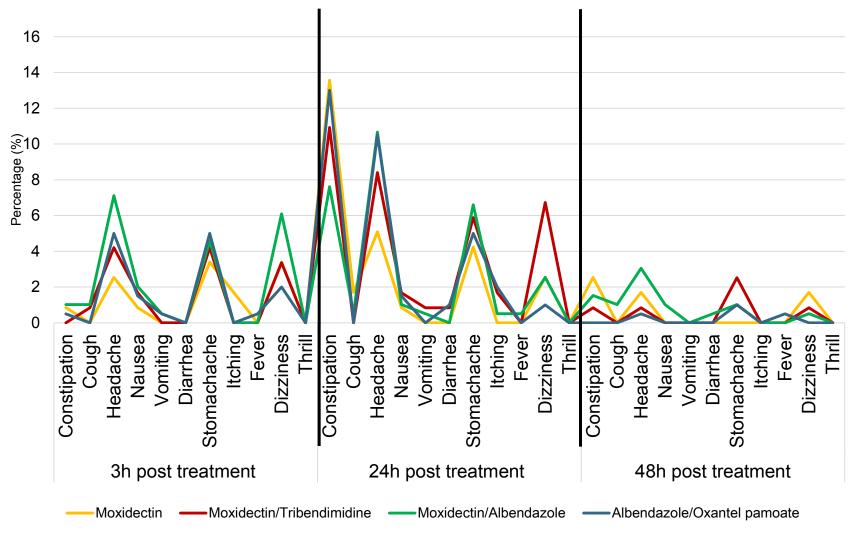

96.5% vs. 96.0%

Difference 0.48 (-1.61 to 2.88)

Results: Adverse events

Efficacy and safety of tribendimidine, tribendimidine plus ivermectin, tribendimidine plus oxantel pamoate, and albendazole plus oxantel pamoate against hookworm and concomitant soil-transmitted helminth infections in Tanzania and Côte d'Ivoire: a randomised, controlled, single-blinded, non-inferiority trial

Tier 3: Moxidectin combinations


Randomized controlled trial on Pemba, Tanzania in 2017

Albendazole (400 mg)	Oxantel pamoate (25 mg/kg)		
Moxidectin (8 mg)	Placebo		
Moxidectin (8 mg)	Albendazole (400 mg)		
Moxidectin (8 mg)	Tribendimidine (400 mg)		

- Moxidectin-albendazole not inferior to albendazole-oxantel (egg reduction rate against *T. trichiura*)
- Moxidectin-albendazole versus moxidectin
- Moxidectin-albendazole versus moxidectin-tribendimidine
- Sample size: 640 adolescents aged 15-20 years

Tier 4: Novel drugs--emodepside

- Veterinary anthelminthic used in dogs and cats
- Development by DNDi for the treatment of onchocerciasis ongoing
- Hookworm and whipworm in vitro and in vivo models at Swiss TPH
- High activity against T. muris in vivo: ED₅₀ of 2.25 mg/kg
- High activity against N. americanus in vivo: ED₅₀ of 1.4 mg/kg
- A. ceylanicum evaluation ongoing

A. ceylanicum L3

T. muris L1

Conclusion

- Drug combinations are the way forward for the treatment of soiltransmitted helminthiases
- Generated a large body of evidence on the efficacy of different drug combinations
- Oxantel pamoate combinations reveal highest efficacy against *T. trichiura* infections followed by ivermectin or moxidectin combinations
- Tribendimidine has high efficacy against hookworm, particular in combination with ivermectin and moxidectin (synergism?)
- Triple dose therapy pyrantel-oxantel pamoate-albendazole significant higher activity than co-administrations with 2 drugs
- Availability of drugs need to be secured
- Emodepside might be a promising alternative anthelminthic drug alone or in combination

Acknowledgements

Swiss TPH: W. Moser, B. Barda, M. Palmerim, E.

Hürlimann

Public Health Laboratory on Pemba, Tanzania

Shaali Ame, Said Ali

Centre Suisse de Recherches Scientifiques, Côte

d'Ivoire: Dr. J. Coulibaly

National Institute of Public Health, Laos; Dr. S.

Sayasone

University of Basel: Prof. J. Huwyler, Dr. M. Puchkov

