Department of Epidemiology and Public Health Infectious Disease Modelling Unit Institut Tropical et de Santé Publique Suisse Associated Institute of the University of Basel ## Opisthorchis viverrini Transmission Models Christine Bürli^{1,2}, Helmut Harbrecht², Peter Odermatt^{1,2}, Somphou Sayasone^{1,2,3}, Nakul Chitnis^{1,2} Swiss TPH Winter Symposium 2017 Helminth Infection – from Transmission to Control Basel, Switzerland, 8 December 2017 ¹Swiss Tropical and Public Health Institute, Basel, Switzerland ²Universität Basel, Basel, Switzerland $^{^3}$ National Institute of Public Health, Vientiane, Lao People's Democratic Republic Basic Model ## Reservoir Host Model The basic reproduction number R_0 is the average number of new cases of an infection (or number of parasite offspring) caused by one typical infected individual (or one parasite), from one generation to the next, in a population with no pre-existing infections. Type-reproduction numbers provide a threshold for whether certain host types can maintain transmission on their own. - ullet U_i is the host-specific type reproduction number. - ullet Q_i is the host-excluded type reproduction number. | Species | Tested | Positive | Prevalence | |---------|--------|----------|------------| | Humans: | 994 | 603 | 61% | | Dogs: | 68 | 17 | 25% | | Cats: | 64 | 34 | 53% | | Fish: | 628 | 129 | 21% | | Snails: | 3102 | 9 | 0.29% | 0.29% Vonghachack *et al.* (Submitted) # PH 😏 #### Basic Model #### Reservoir Host Model # Reservoir Host Model ## Only Human Transmission $$\mathbb{P}\left(U_h > 1\right) = 0.92$$ #### No Human Transmission $$\mathbb{P}\left(Q_h > 1\right) = 0.38$$ ## Only Cat Transmission $$\mathbb{P}\left(U_c > 1\right) = 0.33$$ #### No Cat Transmission $$\mathbb{P}\left(Q_c > 1\right) = 0.94$$ ## Only Dog Transmission $$\mathbb{P}\left(U_d > 1\right) = 0.03$$ #### No Dog Transmission $$\mathbb{P}\left(Q_d > 1\right) = 0.99$$ #### **Education Campaigns** ## Improved Sanitation ## Annual Treatment #### Conclusions - Transmission is unlikely to persist without humans. - Humans can maintain transmission on their own. - Education and improved sanitation require a very high coverage to eliminate. - Best strategy is a medium coverage of humans with treatment and as high as possible with education campaigns and improved sanitation. #### Outlook - Calibrate model with age-dependence in humans. - Model seasonality in fish and snail population dynamics. - Model heterogeneity and morbidity in humans. - Model intensity of infection in fish. #### Conclusions - Transmission is unlikely to persist without humans. - Humans can maintain transmission on their own. - Education and improved sanitation require a very high coverage to eliminate. - Best strategy is a medium coverage of humans with treatment and as high as possible with education campaigns and improved sanitation. #### Outlook - Calibrate model with age-dependence in humans. - Model seasonality in fish and snail population dynamics. - Model heterogeneity and morbidity in humans. - Model intensity of infection in fish. #### **NIOPH** - Somphou Sayasone - Youth Vonghachack #### Swiss TPH - Christine Bürli - Nakul Chitnis - Peter Odermatt - Thomas Smith ## University of Basel Helmut Harbrecht ## Funding • Swiss National Science Foundation