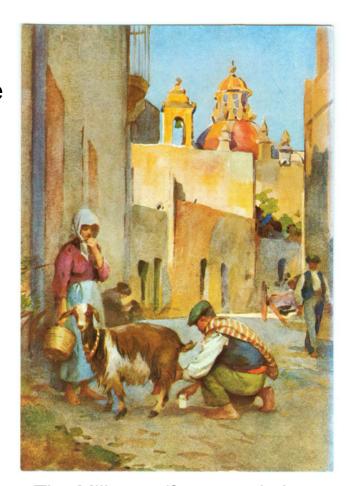


Associated Institute of the University of Basel

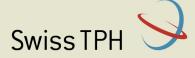
Epidemiology and Public Health Human and Animal Health Studies Esther Schelling

Swiss TPH Winter Symposium 2018

One Health: Zoonoses Control in Humans and Animals

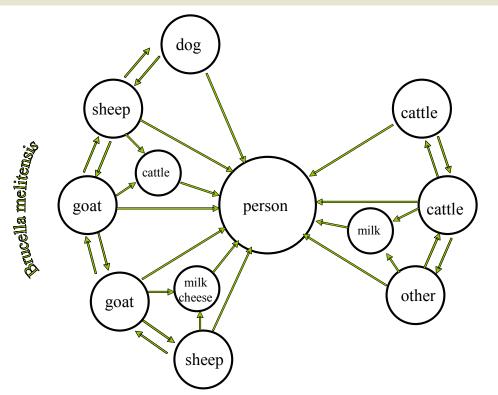

- Taking Stock and Future Priorities

Towards brucellosis control and elimination



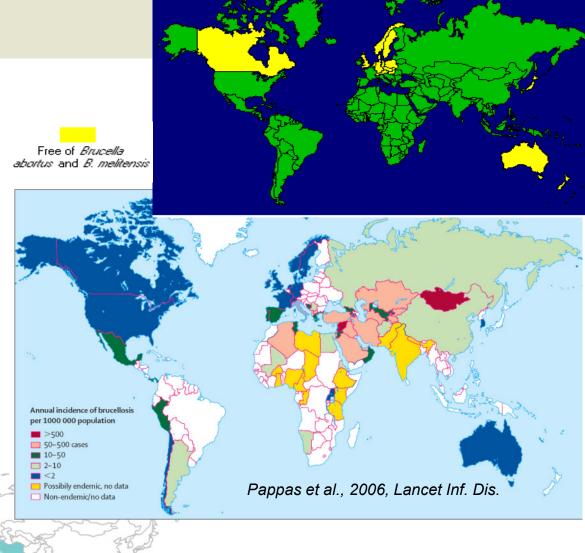
Brucellosis

- 1887 Captain Bruce the bacteria
 Micrococcus melitensis in Malta the Maltese
 physician Zammit discovered the zoonotic
 relationship with goat milk
- 1887 Danish veterinarian Bang isolated
 Bacillus abortus from cattle later renamed
 with M. melitensis to the genus Brucella
- 1914 B. suis (zoonotic), 1953 B. ovis, 1966 B. canis ongoing e.g. marine mammals
- Also buffaloes, camelids, deer, bison, antelopes, horses
- B. melitensis generally sheep and goats (small ruminants) and B. abortus cattle – cross-infections possible
- Brucellosis often cited as one of the most important zoonotic disease (?)


The Milkman (from a painting by Chev. Edw. Caruana Dingli), Malta

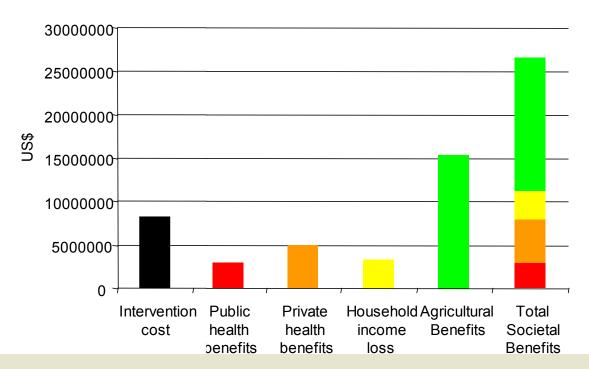
Arucella abortu

Brucellosis


- Brucella spp. bacteria survive well in aerosols and resist drying
- Ruminants: Abortions, birth of weak offspring → reduced milk production → together huge economic losses
- People are infected from livestock (directly or indirectly)
- Human brucellosis: chronic, debilitating disease
- For human treatment only
 Brucella spp. is needed
 (serology) but for vaccination
 livestock and epidemiology
 species needs to be known by
 culture and typing

Ruminant brucellosis worldwide

- Successfully eliminated in few countries versus unknown status in most countries
- Brucellosis not on the WHO list of neglected tropical diseases (indeed, no bacterial zoonosis) → Foodborne Diseases Burden Epidemiology Reference Group (FERG)


'Quality studies' with strict inclusion criteria for systematic reviews;

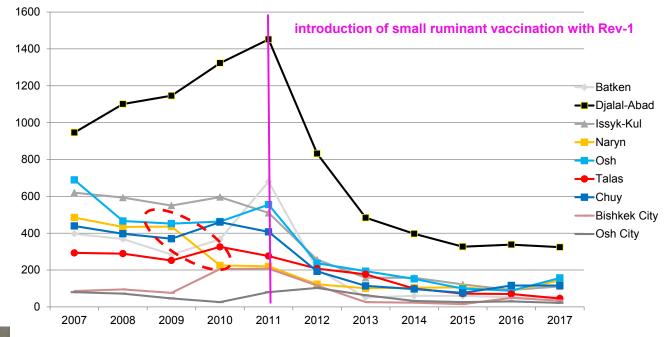
Dean et al., 2012, PLoS NTD Pappas et al. 2006, Lancet Infect Dis



Burden of disease and cost-effective control measures

- Cost-effectiveness studies for advocacy of control (of neglected zoonoses)
- National estimates of burden of disease needed (particularly Africa and not only from assumed high risk groups such as pastoralists)
- Assumed incremental benefits of combined control measures (i.e. make best use when veterinarians reach herds) - safety and efficacy studies needed

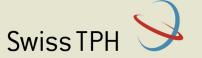
- Livestock mass vaccination against brucellosis in Mongolia
- Societal Benefit Cost ratio = 3.2
- Share of Public Health 10-20%
- Cost-effectiveness ~20 US\$ / DALY averted



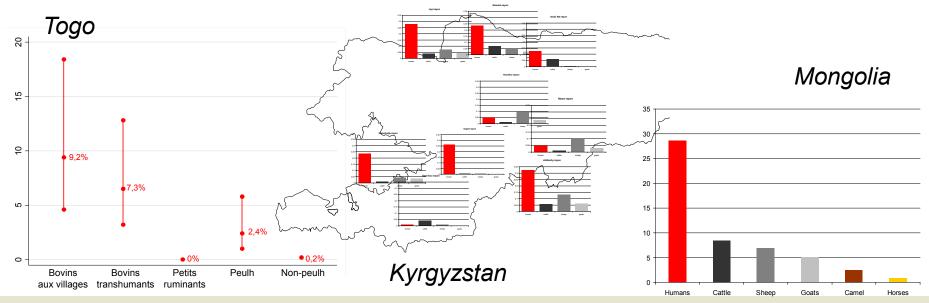
Good information on protection - is half of the intervention

 Understand perceptions, local coping / resilience strategies and expectations of authorities → social sciences

Maintain funding


Kyrgyz village health committee members with information material

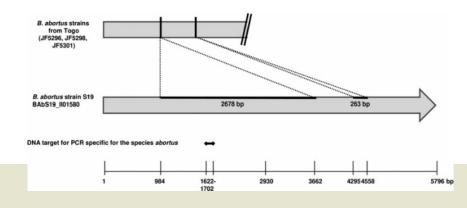
Mongolian booklet for children



Гол, булаг, худгийн ус мал, амьтны шээс, баасаар бохирддог тул түүхий ус уухыг цээрлэх

Clarify the epidemiology – implications for control measures

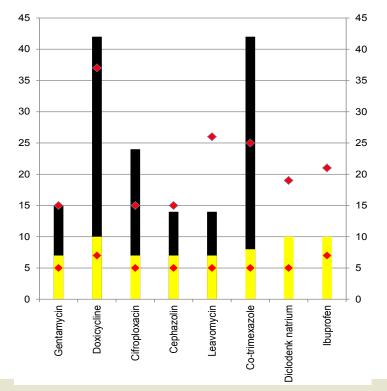
- Correlations of sero-prevalences often only at higher aggregated levels such as districts rather than within households, particularly in mobile households
- West African countries correlations of human seropositivity to cattle, in Kyrgyzstan to sheep, in Mongolia both cattle and small ruminants, and camels
- **Epidemiologic links** livestock and health sectors of multi-host infections → importance that public health and livestock sectors analyse data together
- Joint surveillance also implies regulator exchange of registries and laboratory data – or also of laboratories



Species identification from cultures - still key to epidemiology

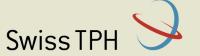
- Requires **good bacteriologists** in **biosafety**laboratories continuing work upgraded with new tools such as DNA extraction
- Biochemical tests, PCR or VNTR which one is most effective to have timely results?
- Validate tests → reference strain and sera banks
- New serological tests next to agglutination tests?
- Quality vaccine production and along the chain

Togolese *B. abortus* strains: deletion in *bruAb2_0168* gene: target for PCR species identification and encodes putative autotransporter → influencing virulence and/or host predilection?


Monitoring and follow-up on findings – e.g. since 2011 new vaccination campaigns in Mongolia

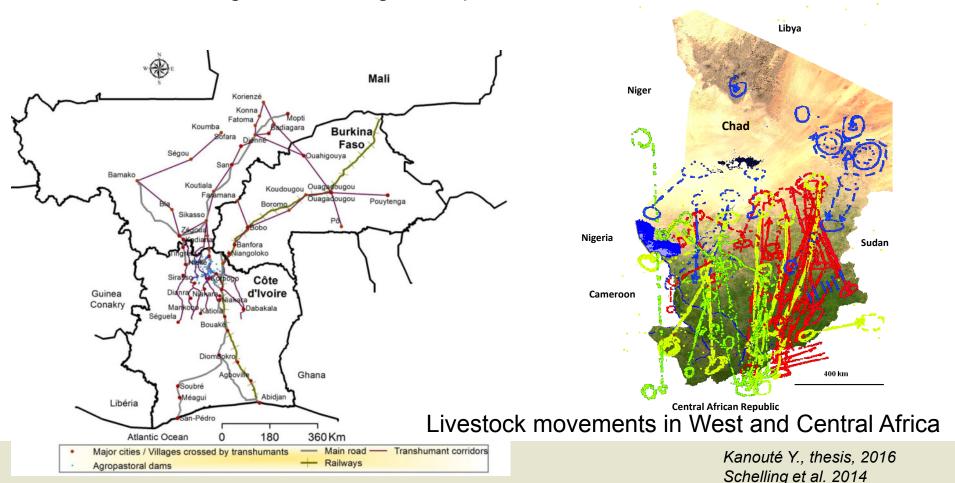
- Joint training of provincial veterinarians and doctors within one year: theory (epidemiology, laboratory, protocol, transdisciplinarity), preparation and doing field study, data management and analysis
- Training now given by Mongolians
- Human incidences as sensitive outcome
- Takes a long commitment of Governments (>10 years campaign, +?)

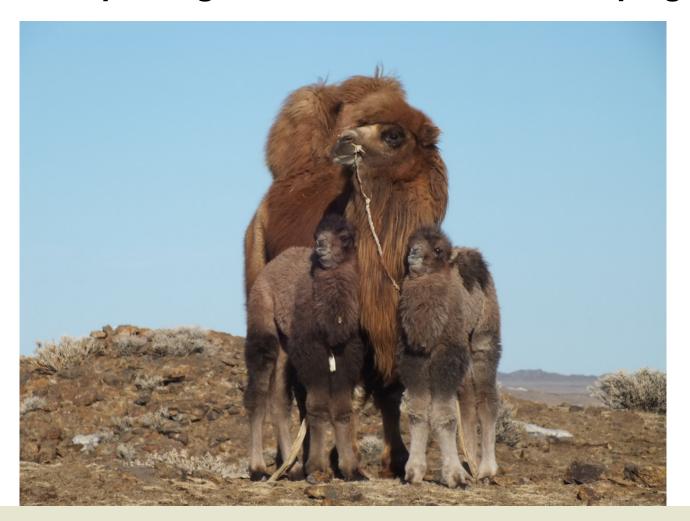
Availabilty of human brucellosis drugs in Mongolia



Operational veterinary services needed

Brucellosis vaccination needs to be part of a business plan of (private)
 veterinarians - who are at the forefront of control - (i.e. costs to reach
 remote herds to be fully covered)


Veterinary medicine no career plan for young people in Armenia or Kyrgyzstan


Transborder mobility of livestock

- High mobility of livestock e.g. in West and Central Africa and Asia
- 20% of livestock moving across borders in Chad
- Work towards regional exchange of experiences and shared control efforts

Can camels (and wildlife) re-introduce brucellosis to cattle, sheep and goats after vaccination campaigns?

Brucellosis in wildlife – can threaten past control efforts

- France officially brucellosis-free in 2005. In 2012 an autochtonous human case in the French Alps
- Brucellosis strains from human, bovine and ibex cases were identical
- Alpine Ibex population acting as a silent reservoir
- All local ruminant herds tested after transhumance to summer pastures
- Management of the infection in alpine lbex is challenging due to their status of protected species and the threat it (vice-versely) represents for the dairy production
- → increases costs and complexity of elimination

Conclusions brucellosis control and towards elimination - no rocket science needed – but field and operational work

- Good (enough) livestock vaccines exist (and minimal effective vaccination coverage needed <70%), also models on how to eliminate based on livestock vaccination → tools exist
- More national burden of disease and refer to cost-effectiveness assessments done in other countries, needed to prioritize interventions
- Long-term commitment needed of all actors including funding agencies to have long-lasting results
- Operational research in resource-poor. mobile contexts and without individual marking of animals
- Maintain good information for livestock keeping communities
- Support burdened affected households and private veterinarians

Conclusions

- Strategically introduce new laboratory tools such as more sensitive tests for chronic brucellosis, differential diagnosis, better methods for strain isolation and species identification (e.g. PCR); national strain and sera banks to validate new tools within countries – but maintain well-operating structures in place
- Monitoring of implementation for corrective actions
- Interdisciplinary research and One Health iterative field, laboratory, costing, stakeholders
- Research partnerships, collaborations with international organizations, networking within regions

