Genomic surveillance of SARS-CoV-2 in Switzerland

Sarah Nadeau

Swiss SARS-CoV-2 Sequencing Consortium (S3C)

Agenda

- Genomic epidemiology: definition and motivation
- Genomic surveillance in Switzerland
- Results:
 - Swiss transmission chains
 - Estimating Re from transmission chains

SARS-CoV-2 is evolving on the same timescale as the pandemic

https://nextstrain.org/

SARS-CoV-2 is evolving on the same timescale as the pandemic

https://nextstrain.org/

Genomic epidemiology: using mutations as clues for how the virus spreads

https://nextstrain.org/

Example 1: Viruses from the first COVID-19 patients were very similar

→ a recent, single introduction into humans

Example 2: Early cases in the US and Europe carried viruses with distinct mutational signatures

Science RESEARCH ARTICLES

Cite as: M. Worobey *et al.*, *Science* 10.1126/science.abc8169 (2020).

The emergence of SARS-CoV-2 in Europe and North America

Michael Worobey^{1*}, Jonathan Pekar^{2,3}, Brendan B. Larsen¹, Martha I. Nelson⁴, Verity Hill⁵, Jeffrey B. Joy^{6,7,8}, Andrew Rambaut⁵, Marc A. Suchard^{9,10,11*}, Joel O. Wertheim^{12*}, Philippe Lemey^{13*}

→ the first cases in these regions were separate introductions and not community spread

Example 3: B.1.1.7 variant rose in frequency across the UK

→ genomic surveillance helps identify variants of concern

Agenda

- Genomic epidemiology: definition and motivation
- Genomic surveillance in Switzerland
- Results:
 - Swiss transmission chains
 - Estimating Re from transmission chains

Swiss SARS-CoV-2 Sequencing Consortium (S3C) sequences from tests performed by Viollier AG

Switzerland ranked 7th globally for wholegenome sequence contribution to GISAID

- ~17,000 genomes from S3C
- ~ 7,000 genomes from others

7% of weekly confirmed cases7th globally on GISAID

The genome sequences are used for several purposes

Variant identification & tracking

B.1.1.7 (or S.501Y.V1) Variant

https://cevo-public.github.io/Quantification-of-the-spread-of-a-SARS-CoV-2-variant/

Transmission chain estimation

Import vs. local spread

Reproductive number estimation

A phylogenetic tree shows the relationships between genomes (and cases)

- Maximum-likelihood tree: the most likely tree best groups sequences with common mutations
 - Branching events in the tree are transmissions events

Image credit: Chemical & Engineering News, adapted from Nextstrain.org

A phylogenetic tree shows the relationships between genomes (and cases)

 Molecular clock: assuming a constant mutation rate, we can estimate time since lineages diverged

December 2020

Image credit: Chemical & Engineering News, adapted from Nextstrain.org

Very similar viruses from Switzerland likely part of the same transmission chain

We estimate transmission chains

*with uncertainty

 Sometimes it is unclear if a single introduction caused one big chain or several introductions caused several smaller chains

We estimate transmission chains

*with uncertainty

We report under both extremes and compare/contrast

Agenda

- Genomic epidemiology: definition and motivation
- Genomic surveillance in Switzerland
- Results:
 - Swiss transmission chains
 - Estimating Re from transmission chains

Swiss transmission chains

- 262 720 transmission chains until 31. December 2020
- 10 largest chains account for 33 50% of genome samples

Swiss transmission chains

 2 - 6 of the 21 - 92 transmission chains introduced in March continued spreading through December

Swiss transmission chains

- The spring border closures reduced the number of new introductions
- But new transmission chains were again sampled after the summer

Agenda

- Genomic epidemiology: definition and motivation
- Genomic surveillance in Switzerland
- Results:
 - Swiss transmission chains
 - Estimating Re from transmission chains

Estimating Re from transmission chains

- Branching events correspond to sampled transmissions
- The distribution of branching times gives information on the transmission rate (and on the reproductive number)

Genomic Re estimates roughly match case-based estimates

Conclusion

- Genomic surveillance useful for:
 - Tracking variants of concern
 - Additional insights on epidemiological dynamics

Thank you

Swiss SARS-CoV-2 Sequencing Consortium (S3C)

Particular thanks to:

- Chaoran Chen
- Timothy Vaughan
- Tanja Stadler

for analyses & input